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Abstract 

 The development of England’s new Nature Recovery Network has been piloted in several 
counties in the country, but few has systematically mapped connectivity based on species dispersal. 
This study proposes and evaluates a novel modelling framework that integrates various layers of 
species information into a spatial conservation prioritization analysis. It aims to strategically 
identify optimal zones for nature recovery that can maximize species connectivity in Oxfordshire, 
using bats as a focal species. The framework was able to not only identify key landscape corridors 
but also stepping stone habitats for bats, and emphasized how well-placed, small-scale green and 
blue infrastructure, such as hedgerows and ponds, can be just as effective as larger reserves. It also 
found that the current coverage of protected areas may not adequately be protecting woodland 
habitat needed for connectivity. Next steps for Oxfordshire’s NRN should scale up the application 
of this connectivity framework to address these areas of priority in the landscape.  
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1. INTRODUCTION 

 Connectivity is at the core of the novel and ambitious Nature Recovery Network (NRN), a 

concerted effort to bridge the disjunct protected areas across England to restore and enhance the 

country’s biodiverse zones. The implementation of the NRN is carried out through county-scale 

local nature recovery strategies (LNRS), a package policy that will include a list of priorities for 

habitat restoration, a map of existing restoration sites and areas of importance for biodiversity, and 

another map proposing locations for future habitat improvements, known as the local-scale NRN 

(Wentworth & Powell, 2021). Pilot LNRS projects carried out in 2020 trialled a variety of 

methodologies, but few integrated a data-driven, systematic framework that allows species 

connectivity to be appropriately represented in the final decision support maps (Cornwall Council, 

2021; Wildlife and Countryside Link, 2021; Smith et al., 2021). This paper aims to address the 

evidence needed for establishing a NRN by taking a specific focus on prioritizing and optimizing 

species-based connectivity corridors through a proposed novel modelling framework. This 

framework was piloted in Oxfordshire, using bats as ecologically representative, bioindicator 

species. This novel methodology will aim to answer the following overarching research questions:  

1. Where are priority zones for species-based connectivity to support the development of the 

local nature recovery network in Oxfordshire? 

2. To what extent can a species-driven connectivity analysis effectively inform the pragmatic 

selection of a local nature recovery network in Oxfordshire? 

3. What are the challenges and areas for further development in using connectivity modelling 

to help design nature recovery networks? 

 Through testing and evaluating this modelling framework, the goal of this paper is to produce 

a replicable and scalable methodology that can be integrated into the timely design of NRNs across 

counties in England and beyond.  

1.1 Policy context 

1.1.1 National NRN and LNRS policy context   

 The NRN was proposed in the 2018 25-Year Environment Plan (25YEP), an environmental 

strategic plan that set forth ten broad environmental goals and approaches on how to achieve them 

(Defra, 2018; UK Parliment, 2021). The 25YEP informed the 2020 Environment Bill, a landmark 

piece of legislation with the power to set legally binding environmental targets, which was 

enshrined and received Royal Assent in 2021, where it became the 2021 Environment Act. The Act 

builds upon and gives legal footing to the 25YEP, allowing the Secretary of State to set legally 

binding long-term targets on priority areas such as air quality and species abundance, as well as 



 2 

conform to five internationally recognized environmental principles (Dbouk, 2022). The 25YEP 

includes six policy areas that address how to act on the ten goals, from managing land (Chapter 1) 

to increasing resource efficiency (Chapter 4). One of these policy topics is the creation of a Nature 

Recovery Network (NRN), which was detailed in Chapter 2, but also mentioned in the “Thriving 

Plants and Wildlife” goal.  

 The goal of the NRN is to join existing protected sites through corridors and stepping stone 

habitats to enhance connectivity, allowing for landscape and climate change resilience and the 

preservation of England’s historic nature (Defra & Natural England, 2020). The network will be 

based on the idea of "more habitat, in better condition; in bigger patches that are more closely 

connected", as proposed by Professor Sir John Lawton, a landmark report that arguably built the 

character of nature restoration and planning for England in the upcoming years (Lawton, 2010). 

This “Better”, “Bigger”, “More”, and “Joined” (BBMJ) goal has gone on to define the mission of 

much of the UK’s wildlife recovery initiatives, not just the nature recovery network (Rose et al., 

2018; Clarke, 2015).  

 The NRN will also play into the wider “30 by 30” national agenda to protect 30% of 

terrestrial environments by 2030. In a report, the UK Department of Environment, Food and Rural 

Affairs (Defra) has identified that NRNs will be “crucial to the delivery of 30 by 30” (Defra, 

2022b). The UK has employed landscape-scale restoration action in the past such as Nature 

Improvement Areas, the Countryside Stewardship Scheme, as well as the farmer cluster concept 

(UK Rural Payments Agency, 2020; Game and Wildlife Conservation Trust, 2015; Defra, 2022a). 

The NRN will draw on this existing work and expand the coverage to restore 75% of protected 

terrestrial and freshwater sites to favourable condition and 500 thousand hectares of habitats outside 

of existing protected sites, and recover threatened species, woodland cover, and ecosystem benefits 

by 2042 (Defra, 2022c). 

 In addition, with the legal footing of the Environment Act, there is now a mandatory system 

for creating spatial strategies at the local level – the LNRS. LNRS will provide the backbone and 

research behind a national high-level Nature Recovery Network (NRN), which will link 

biodiversity-rich areas across the country to increase connectivity and resilience (Ronish & Hilburn, 

2022). There will be approximately 50 LNRS across England, produced through local knowledge 

and mapping, which will help inform and make up the national network (Defra, 2021a). LNRS will 

place heavy emphasis on local co-production and co-ownership, tailored to the locality (Wildlife 

and Countryside Link, 2021). 
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1.1.2 Existing work on LNRS and NRNs in the UK  

 Five pilot LNRS projects were initiated in 2020 in Buckinghamshire, Cornwall, Greater 

Manchester, Northumberland, and Cumbria (Defra, 2021a). The strategies were created through a 

stepwise process of engaging stakeholders and identifying existing conservation sites and 

opportunity regions for recovery. It involved reconciling the different stakeholder values on land to 

locate these new priority zones or conservation targets (Traill-Thompson, 2021). For instance, in 

Buckinghamshire, there was a total engagement of 358 stakeholders through a comprehensive 

workshop (Wildlife and Countryside Link, 2021; Buckinghamshire Council et al., 2021). The 

methodology to create a spatial plan varied between counties: Cumbria, Greater Manchester, and 

Northumberland used overlap mapping of existing protected areas with high-priority zones 

identified by stakeholders (Greater Manchester Council, 2021; Northumberland, 2021; Cumbria 

County Council, 2020). Buckinghamshire and Cornwall piloted systematic conservation planning 

strategies, which are more robust and evidence-based formulations of stakeholder engagement and 

landscape prioritization (Cornwall Council, 2021; Sutherland, 2021).  

From these five pilot projects, several takeaway lessons identified the need for 1) robust leadership 

and governance to prepare the LNRS, 2) adequate resources and capacity to establish partnerships 

with experts, 3) access to data and evidence, 4) collaboration and transparent stakeholder 

engagement, and 5) prototypes that are user-friendly for end users (Defra, 2021b). The differences 

in the methodologies to arrive at a NRN map also allowed for comparative insight into the benefits 

and drawbacks of each approach.  

Defra and Natural England aims for the LNRS to be complete and ready for its first phase of roll 

out by 2023 (Natural England, 2022). As such, many counties have begun the process, such as 

Oxfordshire county.  

1.1.3 Oxfordshire LNRS  

 Oxfordshire is a hub for nature recovery work in the UK, with a portfolio of ecosystem 

restoration projections involving local NGOs, landowners, and researchers, such as but not limited 

to the Thames Valley Environmental Records Centre (TVERC), Wild Oxfordshire, Healthy 

Ecosystems Restoration in Oxfordshire (HERO), Treescapes, and Berks, Bucks, and Oxon Wildlife 

Trust (BBOWT). The passing of the Environment Bill and the new NRN policies has allowed the 

county to gain momentum to scale up nature recovery work, and as such, Oxfordshire provides a 

conducive sandbox for piloting a NRN modelling framework. Two main studies mapping the NRN 

have so far been conducted in Oxfordshire, as described below.  
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 The first study was conducted by TVERC as commissioned by the County Council. Although 

formal guidance has not yet been issued by Defra, preparatory work for developing the LNRS is 

already underway in the county, involving Oxfordshire County Council in collaboration with the 

new Local Nature Partnership, a coalition of environmental NGOs, researchers, and community 

stakeholders (Oxfordshire County Council, 2021a). The county was also in the process of putting 

together Oxfordshire Plan 2050, a joint statutory spatial plan (JSSP) convening the six regional 

authorities in Oxfordshire - Cherwell District, South Oxfordshire, Vale of White Horse District, 

West Oxfordshire, Oxford City, and Oxfordshire County, primarily to set up new housing but also a 

strategic sustainable growth plan. An NRN map was included to inform this Oxfordshire Plan 2050 

(TVERC, 2020). TVERC, the regional authority in terms of environmental data for Berkshire and 

Oxfordshire, and has an extensive species data and habitats repository, collected from citizen 

science recorders, NGOs, governmental agencies, and environmental consultants. With this data, 

they carried out preliminary habitat connectivity and landscape character analysis in order to 

identify a “recovery zone” to cover 50% of Oxfordshire for habitat restoration and creation. The 

connectivity component took a species-based approach by employing a focal woodland and 

grassland species to simulate dispersal through least-cost path analysis. The methodology used in 

the TVERC publication was based on the well-known cost-distance pathway by Roger Catchpole; 

however, the designation of the cost surface is somewhat arbitrary, and more importantly, the 

connectivity analysis was not used in the selection of the final network map (Catchpole, 2006). The 

final map was an overlay of existing core areas as the priority zone, and a combination of 

conservation target areas (CTAs) and important freshwater areas (IFAs) as the recovery zone, with 

adjustments informed by stakeholder input (TVERC, 2020).   

 The second central study was conducted by Smith et al. (2021) using a systematic 

conservation planning approach, a much more comprehensive and structured way of identifying 

ecological networks in the landscape. Bob Smith, the lead author, was the driving force behind the 

systematic conservation planning method used for the pilot Buckinghamshire LNRS. This decision-

making method emphasizing representing diverse stakeholders, which is ideal for the UK landscape 

with its matrix of privately owned and public land, expansive agricultural cover, and existing 

conservation work (Smith et al., 2021). The study was conducted in partnership with BBOWT, and 

therefore the area of interest spanned across the three counties (Berks, Bucks, and Oxon), with the 

aim to pilot a systematic conservation planning methodology for nature recovery network design so 

it can be replicated in other counties across the UK. The paper prioritization models using expert 

opinion to identify priority conservation features and spatial data of existing recovery sites to make 

up the “core” zone. The analysis identified a recovery and wider landscape zone based on the best 

portfolio of sites that met a 30% conservation target while minimizing opportunity cost, calculated 
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using land use criteria that identified the highest quality land with the lowest cost. However, Smith 

et al. (2021) discuss that the study had originally included species data to indicate habitat quality or 

functional connectivity but had purposefully left it out in the final analyses because the algorithms 

to predict the distribution of the species were not reliable enough due to the uncertainty of the input 

data quality. The two limitations discussed for future research were firstly, the lack of fine-scale 

species data to model species distributions, which would have been useful to act as proxies for 

habitat quality. Secondly, the 30% target set in the study was based on a national target, not a 

county-specific target (Prime Minister’s Office, 2020; Garibaldi et al., 2021). As such, there needs 

to be more guidance and consultation with experts and stakeholders on setting priorities and 

conservation targets. Similarly, to TVERC’s draft NRN, Smith et al. (2021) also did not include a 

connectivity analysis, justifying that setting a high conservation target (30%) would be able to 

include enough area to achieve the necessary level of connectivity in the landscape.  

 These two pieces of research set a strong foundation for establishing a robust, evidence based 

LNRS for Oxfordshire; however, the studies identified research gaps in integrating statistically 

based connectivity analysis into nature networks and species data into SCP analysis.  

1.2 Research gap and theoretical framework 

 Connectivity has been addressed throughout the five pilot LNRS projects as well as the two 

central studies (TVERC, 2020; Smith et al., 2021) conducted for Oxfordshire, but they were often 

not integrated appropriately into the final map or include a robust ways of delineating connectivity 

corridors. Most of the work also focused on habitat connectivity, and not species connectivity. In 

order to answer the research questions, this analysis will build on TVERC’s connectivity analysis 

(which was not used for final site selection in their NRN) and propose an approach that can 

integrate connectivity corridors into the final NRN output and select the optimal corridors using an 

SCP algorithm. Then to build on the limitations underlined by Smith et al. (2021), this study will 

also be using the rich species and habitat records from TVERC, with a subsidiary aim to also 

evaluate how bats serve as bioindicators for identifying connectivity corridors for nature recovery.  

 This paper will primarily take an umbrella landscape ecology theoretical approach to guide 

the configuration of the modelling framework. Landscape ecology theory studies the interactions 

between the spatially explicit heterogeneous matrix of the landscape - landscape structure - with 

biotic ecological processes – landscape functioning (Turner & Gardner, 2015; Wu & Hobbs, 2007; 

Kupfer, 1995). Applying landscape ecology theory to conservation planning began as early as 1991 

in a seminal paper by Hansson & Angelstam (1991), highlighting how the understanding of the 

landscape from not just the human perceived biotopes but also to species perceived corridors 

(landscape functioning) are central to reserve selection (landscape structure). Its sub-fields in 
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habitat fragmentation, patch dynamics, ecological corridors, and landscape resistance influencing 

species persistence and dispersal are also iterated as key considerations in the design of nature 

reserves and networks such as the NRN (Howell et al., 2018; Gergel & Turner, 2017; Wiens, 2009). 

Landscape ecology theories are also considered as an extension of the equilibrium theory of island 

biogeography (ETIB), an important contextual theory for understanding how landscape patches is 

populated (MacArthuer & Wilson, 1967; Urban, O’Neill & Shugart, 1987). ETIB postulates that 

species abundance and richness on an island are predictable given the dynamic colonization and 

extinction rates, which are dependent on the geographical isolation and size of the island (Ladle & 

Whittaker, 2011). The ETIB framework provides the theoretical framework for foundational reserve 

design principles, where reserves that are larger, unfragmented, connected, and with less edge 

effects are better than the opposite (Diamond, 1975; Wilson & Willis, 1975; Harris & Silva-Lopez, 

1992; Margules, Higgs & Rafe, 1982; Shafer, 2008). These principles continue to be the basis of 

conservation planning today, exemplified by Lawton’s BBMJ design for England (Daigle et al., 

2020; Williams et al., 2020; Delmas et al., 2019). These two theories will postulate the motivations 

and configuration of the NRN on a broader level, but landscape connectivity, an important sub-

discipline embedded within landscape ecology, will underpin how these networks can facilitate and 

improve species-level conservation.  

1.2.1 Landscape connectivity and graph theory 

 The field of landscape connectivity studies how the landscape facilitates species movement 

between patches, or “islands” through dispersal, migration, or gene flow (Wiens & Moss, 2005; 

Mateo-Sánchez et al., 2015). Landscape ecology research typically focus on two main tools used in 

conservation for enhancing connectivity – corridors and stepping stones (Lynch, 2019; Baum et al., 

2004; Wu, 2013). Stepping stones are refuges of optimal habitat patches protected and interspersed 

throughout the landscape, a concept based on ETIB, as stepping stones can act as refuges between 

core patches that are far away. Corridors on the other hand are continuous, mostly linear features 

that join two patches together (Stewart et al., 2019; Doerr et al., 2014). In addition, there are also 

two ecological concepts that show the different types of landscape connectivity – structural 

connectivity and functional connectivity (Baguette & van Dyck, 2007). Structural connectivity 

refers to the biophysical connections of two core patches, most seen through corridors, and 

functional connectivity is the actual degree in which the patches are connected, given limiting 

abiotic and biotic factors (Laliberté & St-Laurent, 2020). However, Calabrese & Fagan (2004) 

identifies a third type of connectivity in between structural and functional: potential connectivity, 

defined by predictions of connectivity not yet verified by actual species observances - most 

interpolative models of connectivity produce ‘potential connectivity’ pathways (Pietsch, 2018). 
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 Over the years, multiple analytical tools and theoretical approaches have been developed to 

quantify connectivity indices to identify these ‘potential connectivity’ corridors. Modern theories 

articulating landscape connectivity are rooted in graph theory - the idea that the landscape can be 

represented through a series of nodes and links, with the connecting links representing the ability of 

species to move between the nodes, often defined as core habitat areas (Briers, 2012; Saura et al., 

2011). Graph theory simplifies the landscape into a binary - core patches (“nodes”) and links 

(“edges”). It is a powerful theoretic approach given its simplicity, but also for its focus on 

identifying the most efficient flow and connective pathways within a heterogenous landscape 

(Bunn, Urban & Keitt, 2000; Urban et al., 2009; Delmas et al., 2019). 

1.3 Modelling landscape ecology and connectivity 

 Statistical models have been developed to simulate species movement and distribution 

through space based on how the overarching theoretical frameworks discussed above dictate 

ecological processes. As such, these models are ways that theory can be put into practice and inform 

on-the-ground conservation planning and policy. Several common tools used to model landscape 

ecology and connectivity are described below.  

1.3.1 Species distribution models 

  Species distribution models are one of the most used tools to inform conservation planning 

(Franklin, 2010; Thorn et al., 2009; Kremen et al., 2008). The most basic form of SDMs is known 

as correlative models. They utilize a dataset of species observations – presences, and if available, 

absences – and a series of continuous environmental variables such as temperature or vegetation 

indices. By correlating the occurrence locations to the set of variable values they are found on, the 

models can extrapolate and predict the probability of species distribution across a landscape with 

those same variables (Guisan & Thuiller, 2005; Peterson et al., 2011). This described the simplest, 

correlative form of SDMs, while more complex variations are typically called mechanistic models, 

which use physiological information derived from typically lab-based studies to determine the range 

of environmental variables most optimal for a specific species (Tourinho & Vale, 2022).  

 As with any model, SDMs have several key assumptions. Particularly for this study, a major 

assumption of correlative models is that species are at equilibrium with environmental conditions 

and thus can reach any area with favourable environments (Araújo, Marcondes-Machado & Costa, 

2014; Richmond et al., 2010). Evidently this is not the case since behavioural factors are just as 

important in governing species movement and distribution. While this can be addressed with the 

integration of dispersal, competition, and other biotic variables, the ability to access this data and 

the understanding of specific species ecology are limited (Guisan & Thuiller, 2005). Another 

pertinent assumption is the selection of pseudo-absences in presence-only SDMs. Normally, 
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absence points are meant to represent either locations the species are not able to reach due to 

unfavourable abiotic barriers or biotic limitations, but often absences are due to sampling bias 

where difficult-to-reach locations result in scarce data (Hortal, Lobo & Jiménez‐Valverde, 2007; 

Soberón & Nakamura, 2009). Therefore, the selection of pseudo-absences at random locations 

where there are no presences often results in poor predictive models with low performance accuracy 

(Lobo, Jiménez-Valverde & Hortal, 2010; Pearce & Boyce, 2006). 

 Between the modelling complexity of correlative and mechanistic models, there is a realm of 

hybrid models that integrates more biological and spatially-explicit species information into a 

correlative model, such as dispersal patterns. Integrating SDMs and connectivity models is an early 

step towards a hybrid framework. One way this is done is using SDMs as a part of the “resistance 

surface” of a connectivity model. The “resistance surface” is a raster surface with values that 

represent how permeable each cell is to the study species depending on the environmental 

parameters present (Zeller et al., 2017). While these surfaces are frequently created through expert 

consultation where certain land classes are given a certain score of permeability, it is also 

recommended in literature to not entirely rely on expert opinion (Clevenger et al., 2002; Ofori et al., 

2017; Shirk et al., 2010). Using the output of a species distribution model (SDM) is one of the more 

popular empirical data-based alternatives (Dutta et al., 2022). High values of probability of 

occurrence on the SDM output surface can equate to low resistance values, as it indicates the 

preferability of the habitat to species movement (Poor et al., 2012; Algeo et al., 2017). 

1.3.1 Connectivity models 

 Connectivity models based in graph theory simulate pathways species would take across a 

landscape, given the understanding of dispersal distance and landscape permeability (as defined by 

the “resistance surface”). Statistical connectivity models produce metrics, such as probability of 

connectivity or current flow (Foltête et al., 2021), while other widely used tools produce geospatial 

raster grids to create more diffused and alternative paths (Grafius et al., 2017). For instance, least 

cost path models identify a surface of permeability, representing the ease with which species can 

travel across different types of land cover  (Etherington, 2016). Circuit theory is another alternative, 

like least cost paths, but instead represents the land surface as an electrical field with each parcel 

having a ‘conductance’ based on its suitability for species of interest (McRae et al., 2008). One 

application by Isaac et al. (2018) develops a qualitative adaptive management framework for 

designing a resilient NRN in the UK using spatial network theory, which dictates that population 

persistence and resilience is determined by the connectivity between habitat patches. It is a call to 

action for more quantitative connectivity analyses for NRN design that takes into account spatial 

network theory.  
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 For connectivity models, there are several limitations in the ability for resistance surfaces to 

represent the energetic cost of movement as well as accounting for the spatial autocorrelation of 

species dispersal (Cushman, 2010; Unnithan Kumar et al., 2022). Connectivity models also do not 

incorporate temporal variation. The high dispersal capacity of migratory birds and large mammals 

are contingent on a multitude of dynamic variables, such as in the paper by Kaszta et al. (2021) on 

African elephants, they found resistance surfaces are highly variable over seasons (Kaszta, 

Cushman & Slotow, 2021).  

1.3.2 Systematic conservation planning and spatial conservation prioritization  

 SDMs and connectivity models set the value of the land – identifying zones or corridors of 

high connectivity and high probability of species occurrence. It takes further decision-making and 

conservation planning to decide how they can be refined down into target zones for nature 

restoration and habitat creation.  

Sutherland et al. (2004)’s seminal paper on “The need for evidence-based conservation” 

highlighted conservation practitioners in the UK working on wetland management largely rely on 

anecdotal evidence (77%) and only 2% rely on scientific information. Systematic conservation 

planning is a paradigm built in response to the ad hoc process of decision-making in conservation in 

the late 20th to early 21st century. It delineates an interactive, step-based protocol for designing and 

implementing reserves and other conservation initiatives (Fig. 1) (McIntosh et al., 2018; Groves & 

Game, 2015:p.12). Several core concepts underpin systematic conservation planning: first, it aims 

to enhance complementarity, where many biodiversity features are represented in the final range of 

the protected area (PA) with minimal overlap. Second, the persistence of species in the long-term is 

prioritized, where good design, such as reserve size, come into play. Third, the irreplaceability of a 

site, defined by how unique the assemblage of conservation features or species are in the site, can 

also represent the flexibility and fragility of the PA as a whole (Moilanen, Wilson & Possingham, 

2008; Margules & Sarkar, 2007).  
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Figure 1. Stages of systematic conservation planning, from McIntosh et al., 2018. 

 The process itself is transparent, iterative, and consists of some general steps: scoping, 

stakeholder engagement, understanding the context, establishing conservation targets, compilation 

of relevant data, identifying biodiversity surrogates, reviewing existing conservation work, 

selecting, and refining new areas for conservation action, implementation, examining feasibility, 

and implication (Margules & Sarkar, 2007:p.10; Pressey & Bottrill, 2009). The steps that involve 

computational analyses are for the selection of new conservation sites, and this subset makes up 

strategic conservation prioritization (SCP1). Within SCP, there are two main problem 

configurations: the minimum set problem that identifies the best conservation portfolios with the 

least cost (typically conducted through a software called Marxan), and the maximum cover problem 

identifies the optimal, maximum coverage portfolios given a pre-set cost (through software called 

Zonation) (Delavenne et al., 2012; Kukkala & Moilanen, 2013).  

 The creators of systematic conservation planning particularly emphasized the need to 

adequately identify and engage all relevant stakeholders to address the common gap between 

expert-generated conservation plans and reality on the ground (Pressey et al., 1993). There is no 

superior algorithm to conduct site prioritization as it depends on stakeholder and interest group 

priorities; however, given that the scope and timeframe of this study constrains the feasibility of 

meaningful stakeholder engagement, the study will only utilize the computation-focused SCP steps. 

The SCP algorithm will be applied solely as an ecological prioritization model to select optimal 

conservation corridors. 

 
1 Note: SCP abbreviation stands for spatial conservation prioritization, not systematic conservation planning 



 11 

 Smith et al. (2021) paved the path for using systematic conservation planning for the 

designation of NRNs across the country. Bob Smith advocates that it is the best way to develop 

LNRS but acknowledges that there needs to be a cultural shift for this new framework and calls for 

national guidance on creating communities of practice to scale up this methodology (Smith, 2022).  

1.4 Modelling framework   

 While the models described above are often operationalized in their own capacity, an 

integrated methodology that incorporates multiple models can allow a more nuanced simulation of 

ecological behaviour and processes. There is a robust body of literature that has also investigated 

how to best assemble two or more of the described independent conservation planning models to 

optimize the models and take advantage of their synergies. In 2006, the Biological and 

Environmental Evaluation Tools for Landscape Ecology (BEETLE) toolkit was created with the 

UK Wales Forestry Commission, which integrated a focal species concept and connectivity model 

to map habitat networks (Watts et al., 2005; Eycott et al., 2007). Although it has since been 

archived, this suite of tools laid the foundation for species-focused connectivity modelling. Even 

today, some of its tools have been modified and used for pilot LNRS (Cumbria County Council, 

2020). More recent studies such as a paper by Wang et al. (2020) proposes a framework that 

integrates landscape theory with species distribution and connectivity modelling to suggest 

conservation zones, using Maxent outputs in Conefor and Fragstats, a spatial graph and landscape 

ecology statistical program, respectively. Alternatively, Fajardo et al. (2014) utilized a combined 

systematic conservation prioritization, species distribution model, and connectivity analysis to 

examine conservation gaps in Peru. The study highlighted how despite the increasing efforts 

towards area-based conservation, there are still large conservation gaps, and found that this 

integrated modelling approach can better optimize the selection of a more representative and 

connected network. Another notable study is by Jennings et al. (2020) on modelling and prioritizing 

connectivity pathways using ensemble SDMs, which were used for three different connectivity 

analyses, including Linkage Mapper, Circuitscape and a species-agnostic geodiversity analysis.  

 For this study, an integrated modelling framework will be adopted to drive a species-focused 

study and moving away from the existing habitat-based approaches in Oxfordshire, which may not 

account for the dynamic movement of species and therefore cannot adequately protect areas where 

species are traversing. This study will draw from the existing work of the three modelling tools 

described above - SDMs, connectivity analyses, and SCPs - and propose a flexible framework to 

incorporate species data and connectivity modelling to select sites that reduce habitat fragmentation 

and promote connectivity into the development of NRNs (Fig. 2).  
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Figure 2: Modelling framework 

 The hierarchical framework uses easily accessible datasets including species occurrence 

points, environmental covariates, a map of existing protected areas, and conservation targets to 

build a series of models that will ultimately produce a map of the corridors of highest connectivity 

to inform the selection of the NRN. While this paper proposes several modelling tools and 

evaluative, the choice of modelling software remains customizable depending on the purposes of 

the end product.  

 For this study, an ensemble species distribution model will first be conducted using the 

extensive presence-only bat records from TVERC. TVERC validates their species data with a 

quality check process, so citizen science records are verified by experts in the field (TVERC, 2020). 

Using widely available presence-only data allows the tractable modelling framework to be more 

transferable and scalable to other counties with sparser species datasets. There is also uncertainty 

surrounding presence-absence datasets, where the detection of a true and significant “absence” 

requires high sampling effort and detectability (Lobo, Jiménez-Valverde & Hortal, 2010; Grimmett, 

Whitsed & Horta, 2020). The ensemble model will aim to address some of the limiting assumptions 

of correlative SDMs to create a reliable probability surface. The SDM output surface will then be 

transformed in ArcGIS into the resistance layer for a connectivity model. A least-cost path 

connectivity model will then measure structural/potential connectivity and identify the optimal 
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paths between existing protected areas and produce a raster surface representing species movement 

and presence routes. This surface will be used as a “cost” surface in an optimization algorithm, 

which will be constructed with a SCP coding library. With bats as the focal species, the SCP 

algorithm will identify the bottlenecks of species movement and optimal zones for the focal species 

connectivity. Various previous studies have incorporated seascape connectivity metrics into SCP 

algorithms (largely using Marxan), but very little landscape studies have taken this approach. As 

such, this framework will further act as a proof of concept for integrating landscape connectivity 

metrics into conservation prioritization (Weeks, 2017; Beger et al., 2010; Engelhard et al., 2017). 

1.5 Bats as focal indicator species  

 The focal species approach is based on the umbrella species concept, where the functional 

needs of the wider biodiversity can be encapsulated by one species (Lambeck, 1997). This differs 

from a single and narrow species approach which focuses more on species-specific preferences, but 

instead encapsulates an evaluation of the landscape based on realistic species movement and 

advocates high quality habitats for a whole suite of species (Lõhmus et al., 2020). In particular, this 

approach can benefit counties with a lack of species records and allow a more efficient modelling 

process that reduces the noise of individual species preferences. The Healthy Ecosystems 

Restoration Oxfordshire (HERO) network, a convening initiative that brings together the different 

nature recovery implementers and researchers across the county, also advocated for a species-

targeted approach using a shortlist of keystone species to be selected as proxies for other 

ecologically similar species for nature recovery strategies (HERO, 2021). 

 Bats were chosen as the focus of this study as focal species. Their ecological preferences in or 

near woodlands, water bodies, and urban development allow them to share and represent a wide 

range of ecological niches in Oxfordshire, highlighting critical habitat and favouring connectivity 

features such as hedgerows (Lacoeuilhe et al., 2018; Altringham, 2014). As aerial species, bats have 

high mobility and are less constrained by terrestrial barriers, but due to their body sizes, their 

dispersal range is also small with relatively high home range fidelity (Hillen, Kiefer & Veith, 2009). 

This study benefits from bat ecology, as it simplifies the landscape from a high amount of 

connectivity barriers but also maintains small ranges, which are shared with various other small 

mammals common in Oxfordshire (Oxfordshire Mammal Group, 2017). 

 Bats are also a bioindicator species, which are species sensitive to environmental change, and 

as a result, changes in their population numbers or health can be indicative of the health of the 

ecosystem they live in. Indicator species typically have a widespread distribution, clear and 

distinguishable taxonomy, high on the trophic level, and sensitive to habitat loss (Spector & 

Forsyth, 1998; Jones et al., 2009; Li & Kalcounis‐Rueppell, 2018). Jones et al. (2009) wrote one of 
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the most comprehensive studies on bats as bioindicators, and the researchers argue that bats can 

exhibit all these traits well - bat taxonomy is largely stable except for the recent discovery of a few 

cryptic species, and the slow reproductive cycle allows bats to show clear population trends, 

including rapid declines. Bats in the UK are also insectivores, and this higher trophic level allows 

for interaction with a variety of other species as well (Alleva et al., 2006). Furthermore, the 

geographical distribution and the abundance of bats allow them to be bioindicators around the world 

(Kunz, 1982). As such, bats can fill a variety of ecological niches due to this high functional 

diversity.   

 For the policy context, all bat species in the UK are under national and international 

protection. Internationally, the UK is a signatory of the EUROBATs agreement (1994) where 51 

bats and their roosts are protected by legislation (Joint Nature Conservation Committee, 2020), as 

well as the Convention on Migratory Species (1983) (Convention on the Conservation of Migratory 

Species of Wild Animals, 1979). Nationally, there has been a series of legislation, such as the 

Wildlife and Countryside Act (1981) and the Conservation of Habitats and Species Regulations 

(2017) that set out and enforce protection rules for bats (Bat Conservation Trust, 2016). In 2018, 

Defra published a list of indicator species to measure progress to combat biodiversity loss, and 

eleven bat species were listed in this catalogue: brown long-eared bat, common pipistrelle, 

Daubenton's bat, greater horseshoe bat, lesser horseshoe bat, Natterer’s bat, noctule, serotine, 

soprano pipistrelle and whiskered/Brandt’s bat (the latter two species cannot be separately 

distinguished during monitoring surveys and so are treated as one species group) (Joint Nature 

Conservation Committee, 2020). 

 

 

 

 

 

 

 



 15 

2. METHODOLOGY  

 The study area is Oxfordshire County in Southeast England, with an area of 2,605 km2 and a 

population of 725,300 in 2021 (Oxfordshire County Council, 2021b) (Fig. 3). All analyses were 

done in the OSGB36 British National Grid - EPSG:27700 projection. The Oxfordshire Wildlife and 

Landscape Study (OWLS) divided the county into several landscape character areas, which are used 

in reference to broad regional stretches throughout the rest of this paper.  

 

Figure 3: Map of Oxfordshire character zones (OWLS, 2004) 

2.1 Data and preprocessing 

 The data needed for the three-step modelling process can be simply seen as three main 

components: the species data, the environmental covariates, and existing protected areas (cores). 

The full GIS workflow is detailed in Appendix 1.   

2.1.1 Species data  

 Several data wrangling and cleaning steps were taken to ensure the dataset is relevant and 

scoped to fit well within the constraints of the study area and research period. The species records 

were extracted from 2019 to 2022 to maintain the relevance of current distributions, but also to take 

into account the impact COVID-19 has had on sampling effort by including a pre-pandemic year as 

well. The TVERC data also included values for abundance, but the data was not used for the scope 

of this paper as species abundance distribution requires absence data as well (Pearce & Boyce, 

2006).   
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 Eliminating spatial autocorrelation is also one of the main concerns of presence-only data, 

and there is no perfect methodology to address it (Franklin, 2010:p.139; F. Dormann et al., 2007). 

Studies agree that the best tools to use are to spatially filter (rarefy) the occurrence points and build 

a bias file, a raster surface that limits where background points are selected to limit them to 

locations closer to the rest of the distribution points (Fourcade et al., 2014; Brown, 2014; Hawkins 

et al., 2007). The species occurrence data were spatially rarefied in ArcGIS Pro using SDMToolbox 

(Brown, Bennett & French, 2017), a Python open-source toolbox for creating input files for SDM 

models. The rarefying tool used a distance parameter to remove points within a certain buffer zone. 

The distance value used for this analysis was 200 meters, which was chosen based on habitat 

heterogeneity - the recommended criteria by past literature, as well as average generalist dispersal 

distance (Boria et al., 2014; Anderson & Raza, 2010; Pearson et al., 2006; Mimet et al., 2020). The 

distance away from a habitat feature from a certain cell also tends to be approximately 200m 

according to histograms produced from the Euclidean distance analysis.  

 Eleven bat species were selected using the Defra biodiversity indicator guidelines: brown 

long-eared bat, common pipistrelle, Daubenton's bat, greater horseshoe bat, lesser horseshoe bat, 

Natterer’s bat, noctule, serotine, soprano pipistrelle, and whiskered/Brandt’s bat (Defra et al., 2021; 

Boughey & Langton, 2021). Due to high computational times of the modelling process (~5 hours 

per model), the species are then categorized into functional guilds representing two major specialist 

habitat types to use as surrogates for analysis. There is a lot of habitats overlap between the species 

as bats in the UK all tend to prefer similar habitat types - woodlands with accessible meadows and 

riparian zones, with linear features such as treelines and hedges to traverse (Walsh & Harris, 1996).  

 A literature review was conducted for the categorization but the Bat Conservation Trust 

guidelines on “woodland specialist” bat species were used to determine guild membership (Table 

1). The average dispersal distances were also determined through several sources and was inputted 

into later steps of the analysis. Bat roosts alongside flight sightings were included as presences to 

consider the full home range, from foraging habitat to colonies.  
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Table 1: Literature review determining bat guild membership and dispersal distances 

Functional 

guild 

Species Evidence for guild 

membership 

Dispersal distance 

Riparian 

specialists 

Daubenton’s bat 

Myotis daubentonii 

Downs & Racey, 2006;  

Todd & Williamson, 2019 

2.3 km 

(Dietz, Encarnacão 

& Kalko, 2006) 

Soprano pipistrelle 

Pipistrellus pygmaeus 

Lundy & Montgomery, 2010;  

Rachwald et al., 2016;  

Todd & Williamson, 2019 

2 km 

(Vaughan, 1997) 

Woodland 

specialists 

Natterer’s bat 

Myotis nattereri 

Bat Conservation Trust, 2010;  

Ciechanowski, 2015) 

3 - 5 km  

(Smith & Racey, 

2008) 

Noctule bat 

Nyctalus noctula 

Bat Conservation Trust, 2010;  

Ducci et al., 2019;  

Mackie & Racey, 2007 

4 km  

(Mackie & Racey, 

2007) 

Lesser horseshoe bat 

Rhinolophus hipposideros 

Bat Conservation Trust, 2010;  

Reiter et al., 2013 

1.5 - 6 km  

(Billington & 

Rawlinson, 2006) 

Brown long-eared bat 

Plecotus auritus 

Bat Conservation Trust, 2010; 

Murphy et al., 2012 

2.8 - 3.3 km  

(Veith et al., 2004) 

Whiskered bat and 

Brandt’s bat 

Myotis mystacinus & 

Bat Conservation Trust, 2010;  

Kurek et al., 2020 

3.2 - 5 km  

(Buckley et al., 

2013; Dietz & 
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Myotis brandti Kiefer, 2016) 

Generalist Common pipistrelle 

Pipistrellus pipistrellus 

Mimet et al., 2020;  

Rachwald et al., 2016;  

Regnery et al., 2013 

500m - 5 km  

(Lacoeuilhe et al., 

2018; Avery, 

1985) 

Serotine bat 

Eptesicus serotinus 

Ciechanowski, 2015;  

Tiede et al., 2020;  

Tink et al., 2014 

2 - 6.5 km  

(Catto et al., 1996) 

 

 There are some elements that cannot be included in the scale of this multi-species analysis. 

For example, life stages, migratory paths, mating and breeding areas, and roost selection need to be 

taken into consideration to model functional connectivity and realized niches.  

2.1.2 Environmental data 

 Environmental or explanatory variables were raster datasets obtained from a variety of 

different sources. Due to the small scope of the study area, using the classic bioclimatic variables 

from WorldClim often seen in species distributions models was not appropriate, as the highest 

publicly available resolution is 1 km2 (Segal et al., 2021). Segal et al. (2021) also proved that 

downscaling the data to a finer resolution was also insufficient as there is minimal climatic variation 

across the county, and thus bioclimatic variables would not hold significant predictive potential. 

Oxfordshire currently does not have sufficient microclimate data that would have been able to 

replace the bioclimatic variables either. As a result, the most essential environmental variables were 

land use datasets, including a vector polygon land use map and linear hedgerow map which was 

then rasterized (Smith, 2021).  

 A digital elevation model (DEM) was obtained from the Japan Aerospace Exploration 

Agency using the ALOS satellite, which is available at a 30-meter resolution (JAXA, 2021). Aspect 

and slope were also variables that were extracted from the DEM using their respective tools in 

ArcMap Pro. An additional variable of a normalized difference vegetation index was also calculated 

from USGS Landsat 8 Collection 1 Tier 1 OLI raw scenes using the equation NDVI = (Near 

Infrared - Red) / (Near Infrared + Red), to identify areas of high vegetation coverage and urban 

extent (USGS, 2022).  
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 Lastly, depending on the species guild, different Euclidean distance rasters were also added to 

selectively weight preferential habitat. This data was derived from the land use polygon feature 

class, with the relevant features selected by attribute and exported. A Euclidean distance tool was 

run on the exported features, a commonly used methodology including categorical data in species 

distribution models (Hollings et al., 2017; Rainho & Palmeirim, 2011). For water-biased species 

which are observed near a diversity of different water bodies including running and still, the 

included environmental variable was ‘distance to water’, with features that include “water”, 

“canal”, “fen, marsh, and swamp”, “reedbed”, “reservoir”, “running water”, and “standing water”. 

For woodland-biased species, the only feature selected was “woodland: broadleaved”, as 

Ciechanowski (2015) found that many of the selected species for this study avoided coniferous and 

mixed forests (Ciechanowski, 2015). A multicollinearity test on all environmental covariates was 

run using the SDMToolbox, and the aspect layer was removed. None of the other environmental 

variables were highly autocorrelated.  

2.1.3 Core areas - existing protected areas  

 The core zone of the TVERC draft NRN was used as the existing protected area polygon, or 

the main nodes in the connectivity analysis. It covers approximately 11% of Oxfordshire and 

includes existing protected sites such as Special Protection Areas, Sites of Special Scientific 

Interest, Ramsar sites, local nature reserves, Woodland Trust reserves, and more (TVERC, 2020). 

The AONBs are not included as a part of the core protected areas, because they cover such large 

areas and are thus managed as landscape characters and include large areas of intensive farmland. 

Due to the extensive processing time of the connectivity analysis and the complexity of the core 

polygon edges, the core areas are selected based on their proximity to bat observances and size. 

Taking into consideration the dispersal distance of bats (Table 1), a two-kilometre buffer was set 

around each occurrence point, and core areas were selected based on their intersection with the 

buffer distance. Sites that are larger than 10 hectares were filtered and selected, with a focus on 

assessing “bigger” reserves (BBMJ) and to manage runtime.  

2.2 Modelling  

2.2.1 Species distribution modelling using BIOMOD2 

 The species distribution modelling was done in R using the ‘BIOMOD2’ package for 

ensemble modelling (Thuiller et al., 2009) (Appendix 2). In order to increase the robustness of the 

model given only presence-only data, which is often the case of environmental records for counties 

in the UK, the BIOMOD2 package was chosen for its ability to conduct several different SDM 

algorithms, identify the best model results, merge them with a weighted means algorithm and create 
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ensemble model results. Ensemble forecasting is an increasingly popular SDM methodology as it 

can combat some of the limitations of individual algorithms but allow for comparison between the 

performance of various algorithms and explore a range of distribution predictions (Aguirre-

Gutiérrez et al., 2013; Araújo & New, 2007; Hao et al., 2019). An increasing number of studies 

have also found that ensembles have better predictive power as well (Friedman & Popescu, 2008; 

Seni & Elder, 2010). Though it is also important to address the limitations, as seen by a study by 

Hannemann et al. (2015), which found that unstable species responses to environmental covariates 

can still limit the ability for ensemble algorithms to rectify the faults of individual models 

(Hannemann, Willis & Macias-Fauria, 2016).  

 The algorithms chosen for the ensemble analysis were the generalized linear model (GLM), 

generalized additive model (GAM), generalized boosted model (GBM), random forest (RF), and 

maximum entropy (MAXENT). These models were selected for their complementarity in creating a 

hybrid of two regression-based (GLM and GAM), two tree-based (RF and GBM), and other models 

(MAXENT), also with varying parametric and non-parametric classifiers for computation (Valavi et 

al., 2022; Aguirre-Gutiérrez et al., 2013). The ensemble model selected was a weighted means 

calculation, which preferentially weighs the individual models that have the best performing results 

before merging. Studies have found that weighted means is able to significantly improve model 

predictive power and forecasting compared to other popular methods such as committee averaging 

(Marmion et al., 2009; Jinga, Liao & Nobis, 2021). A 0.6 threshold was also used to filter out 

models that performed below a TSS score of 0.6 in order to optimize the ensemble model 

performance (Thuiller et al., 2009).  

 In order to optimize the algorithm performance, modelling options and parameters were 

carefully chosen. Merow et al. (2013) emphasizes the drawbacks of using default Maxent 

parameters and instead, demonstrates the importance of setting locally specific input parameters for 

MAXENT in determining model outputs and accuracy (Merow, Smith & Silander, 2013). For 

MAXENT, an additional analysis was coded in R using the ENMeval package (Appendix 3), which 

produced a bias file using two-dimensional kernel density estimation. The analysis also identified 

the best feature classes and regularization multiplier parameters for each individual species guild, 

selecting the parameters that had the lowest delta Akaike Information Criterion (AIC) score 

(Appendix 5) (Kass et al., 2021). Features are mathematical transformations of the environmental 

covariates, and the regularization parameter works to limit the fit of the model distribution to avoid 

overfitting - a smaller multiplier will produce a localized fit, while a larger multiplier can result in a 

more distributed fit (Phillips, Anderson & Schapire, 2006). Bias files were not yet supported with 

the BIOMOD2 package, but a comparison was run using the BIOMOD Maxent results and the 

Maxent results from the standalone interface, and there was little difference in the AUC/ROC 
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scores. The package also checked for potential background points and as there were 4,400,405, the 

library and literature recommended 10,000 background points (Kass et al., 2021; Barbet-Massin et 

al., 2012). 1000 trees were selected for the RF (Valavi et al., 2021), and for GLM, an interaction 

level of 1 and a quadratic formula were specified. A mixed GAM computation vehicle algorithm 

(mgcv) was used for the GAM analysis for a more robust smoothing parameter (Zurell et al., 2020; 

Larson, 2015). The models were run with 10,000 pseudo-absence points using a random selection 

strategy, two selection iterations were run to account for variability (Descombes et al., 2018; 

Barbet-Massin et al., 2012).   

 For model evaluation, ten evaluation runs were conducted; 80% of the data was partitioned to 

train and calibrate models, with 20% used for testing. The evaluation of SDM models is also a 

critical consideration of the analysis, and thus, another benefit of choosing the BIOMOD2 library 

was its ability to calculate true skill statistics (TSS) scores. TSS can compensate for the reliance on 

prevalence from the kappa statistic and when compared to AUC, specificity, and sensitivity scores, 

TSS was able to produce more realistic results (Allouche, Tsoar & Kadmon, 2006; Somodi, Lepesi 

& Botta-Dukát, 2017; Shabani, Kumar & Ahmadi, 2018). 

2.2.2 Connectivity modelling using Linkage Mapper  

 The connectivity model was conducted in Linkage Mapper, a least cost path (LCP) tool built 

in Python and operated in ArcMap 10.8 (McRae & Kavangh, 2011). The TVERC draft NRN 

similarly used a least-cost approach, using expert opinion to assign a cost value for each land use 

type to represent how permeable the landscape is to the focal species, and using a QGIS cost-

distance tool to identify the pathways. LCPs are based on network theory and uses Euclidean 

distance and cost allocation calculations to construct pathways between core areas. It uses Voronoi 

polygons to divide the core area into different vertices to connect to other polygons, which means 

edge complexity is an important variable. Linkage Mapper expands upon least cost paths by 

producing multigraph pathways instead of a singular least cost link connecting nodes (Walker et al., 

2019).  

 In Raster Calculator, the SDM surfaces were normalized to a scale of 0 to 1 and inverted to 

create the resistance raster. This is done so the highest probabilities of presence were represented as 

0 instead of 1, to reflect high permeability (low cost) instead of high resistance for the least cost 

path analysis.  

 The pairwise analysis was selected to find connection of each core to any other potential 

reachable core. The model then located adjacent cores using a cost and Euclidean allocation 

method, and a network of core areas constructed using a cost-weighted and Euclidean network 
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adjacency method. The dispersal distance for each species guild was taken into consideration in 

parsing the corridors, where the 5 km was inputted as the maximum corridor distance (Altringham 

& Kerth, 2016; Davidson-Watts, Walls & Jones, 2006; Bontadina, Schofield & Naef‐Daenzer, 

2002; Rainho & Palmeirim, 2011). For an exploratory evaluation, the corridors were ground-truthed 

with remote sensing imagery to see if existing bat occurrences are captured by the corridors.  

 Several metrics were calculated to quantify the importance of the cores and links for 

connectivity. The ratio of the cost-weighted distance (CWD) to the Euclidean (CWD:Euc) and 

least-cost path (CWD:LCP) were calculated to evaluate linkage quality. CWD:Euc represents the 

resistance of the corridor relative to their distance to the core node, with a higher ratio indicating 

that the two distances are similar, and thus a lower resistance for travel while CWD:LCP measures 

the resistance along the path of least resistance (Qiangqiang et al., 2019; Feng et al., 2021; Dutta et 

al., 2022). Additionally, the current flow betweenness centrality was calculated to evaluate the 

importance of the cores (nodes) for connectivity. Betweenness centrality was identified in the 

literature as the most useful in the suite of centrality metrics for determining how each node 

contributes to the conductance of the landscape (Estrada & Bodin, 2008; Poodat et al., 2015). This 

was calculated through a separate Centrality Mapper tool, which was run using the same Python 

toolbox as Linkage Mapper, but it integrates Circuitscape algorithms to deduce how topologically 

important a node is within a graph network (Pereira, Saura & Jordán, 2017; Brodie, Mohd-Azlan & 

Schnell, 2016; McRae & Kavangh, 2011). Using circuit theory, each link is assigned a resistance 

value determined by the cost-weighted distance, and 1 Amp of electric current is injected into each 

core and adds the current flow out of each core to evaluate its importance (Carroll, McRae & 

Brookes, 2012; Keeley, Beier & Jenness, 2021).  

2.2.3 Spatial conservation prioritization using prioritizr with the Gurobi optimizer  

 The SCP analysis was conducted in R using the Gurobi optimizer integrated into the 

‘prioritizr’ package (Gurobi Optimization, 2022; Hanson et al., 2022) (Appendix 4). It is a multiple 

integer linear programming (MILP) solver and is currently the fastest solver available as it was 

found to outperform Marxan, a simulated annealing heuristic solver, in identifying the least cost 

solutions with the fastest calculation time (Schuster et al., 2020; Beyer et al., 2016). Integer 

programming solvers are the basis of prioritization solvers and has been used for reserve selection 

before heuristic algorithms like Marxan (Underhill, 1994). In brief, they are designed to minimize 

the cost value of establishing reserves given a set of constraints and a target – either reserve size or 

conservation feature representation (Moilanen, Wilson & Possingham, 2008).  

 The data inputs for an SCP algorithm includes three key components: planning units, 

conservation features, and conservation targets. Oxfordshire was first divided into 66,364 square 
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200m2 planning units, which are gridded spatial units used to determine the cost value of each 

parcel and implement action (Daigle et al., 2020). The resolution was scaled up from the 30m 

resolution of the SDM and connectivity analysis given the computing intensity of the models. 

200m2 was carefully chosen after trialing planning unit sizes with 50m, 100m, 300m, 500m, and 

1km, and was selected for its computing efficiency (~20-30-minute processing time) and high 

enough resolution to allow for habitat heterogeneity to be represented (Mo et al., 2019). 

Furthermore, planning units that are too small are 1) computationally intensive and 2) reduced 

efficiency with too small planning units (Ball, Possingham & Watts, 2009).The cost values were 

derived from the connectivity raster, which represents both species distribution and movement. The 

connectivity raster was converted into points and spatially joined to the planning units using the 

mean connectivity value for each. The existing core areas were also spatially joined with the 

planning units to identify which planning units are already protected. The conservation features are 

rasterized habitat files of woodland and freshwater bodies. Hedgerows were not included in the SCP 

analysis because they are too fine scale, and if the hedgerows raster was resampled to 200m, it 

would cover nearly the entirety of the county, as if there are any hedgerow coverage in the 200m 

planning unit, it would be considered a full hedgerow site because of the binary character of the 

hedgerow raster. SCP modelling requires “targets” to be set, representing the proportion of a 

conservation feature that should be protected. For instance, a meadow feature of 20 planning units 

with a 50% target means 10 planning units will be selected for conservation. This is often 

determined through iterative discussions with local stakeholders such as environmental NGOs, 

farmers, landowners, parish, and town councillors, and more. Given the scope of this study, it was 

impractical to conduct stakeholder engagement, and as such, two proxy targets of 50% from 

TVERC’s Draft Nature Recovery Strategy and 30% from Smith et al. (2021)’s analysis will be used 

to allow for comparison (Ferrier, Pressey & Barrett, 2000). The 50% target will also provide more 

leeway for integrating stakeholder engagement in future research,  

 The problem formulation was designed using a minimum set objective, which aims to 

minimize cost during the design of the solution, where the cost value can be anything such as land 

cost or species dispersal cost. A low boundary penalty parameter was also included to slightly 

favour spatial clumping.  

 Lastly, the two statistical metrics were calculated to evaluate the performance of the 

prioritization solution. The irreplaceability of selected planning units was first evaluated using 

Ferrier’s score (2000), a metric to evaluate the importance of a site in helping achieve the pre-set 

conservation target (Ferrier, Pressey & Barrett, 2000). Irreplaceability as defined by Pressey et al. 

(1993), is how important is a planning unit in achieving the target, or the lost cost if the site is not 

protected. The Ferrier’s score can be a complex calculation given different SCP scenarios, but for 
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this analysis, the Ferrier’s score indicates how frequently a planning unit with a certain set of 

conservation features is selected given all possible site selection iterations (Ferrier, Pressey & 

Barrett, 2000). It is a calculation of how representative a site is for conservation features. A 

representation statistic was also calculated using a prioritizr package function to see how well 

conservation feature is currently protected by existing core areas, and how well the new proposed 

network protected it.  
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3. RESULTS 

3.1 Species distribution models  

 As expected, the species distribution models between the bat guilds are similar given their 

widespread distribution and similarity in habitat, despite having specialist habitat types. There was 

also a high preference for population centres, as seen with the high probability of occurrence in 

Oxford City, Witney, Abingdon, Wallingford, Henley-on-Thames, Bicester, Banbury, and many 

others. This is highly likely due to the skewed citizen science recording effort that favours locations 

that are easily reachable. It could also likely that bats also prefer population dense centres given 

their urban ecologies - there are typically high invertebrate populations and many high potential 

roosting sites in older infrastructure and green spaces with street trees (Altringham, 2014). 

 An interesting phenomenon can also be observed where the middle of city centres typically 

has a lower probability of occurrence for riparian specialists than the margins of the city or town, 

often with a stark delineation. This is most easily seen in Carterton, Banbury, Bicester, Oxford, and 

Didcot. Wildlife avoiding areas of high human density may seem intuitive, but for synanthropic 

species such as bats, there is fairly little evidence that states bats avoid centres of high human 

activity (Li et al., 2020; Lehrer et al., 2021). Lehrer et al. (2021) was the first study to provide 

evidence that bats avoided areas of urban noise. It is likely that for the riparian species model, these 

are areas far from aquatic bodies, which was a preferentially added environmental variable, 

indicating the habitat specialism of the two species in the guild (Fig. 4c). Woodland specialists and 

generalist guilds do not show the same behaviour (Fig. 4b).  

 The high resolution of the environmental data also allows a clear designation of land units to 

be visualized even in the model outputs, with the preferential selection of hedgerows and rivers 

showing particularly clear delineations of borders between arable land parcels. The environmental 

variable response curves also indicated that the most important variable was the habitat and distance 

to habitat raster for all three guilds. These linear features on the landscape of not just hedgerows but 

also rivers have been found to be highly important for bats, a well-studied habitat feature for bat 

movement (Boughey & Langton, 2021; Lacoeuilhe et al., 2018). 
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Figure 4a: Generalist species SDM 

 

Figure 4b: Woodland specialists SDM 

 

Figure 4c: Riparian specialists SDM 

Figure 4: Ensemble species distribution models for three 

bat species guilds in Oxfordshire merged with weighted 

means algorithm 

Data: NDVI (USGS), DEM (JAXA ALOS), Natural Capital habitat map, 

species occurrences (TVERC) 

CRS: OSGB36 British National Grid - EPSG:27700 

 Riparian specialists saw proportionally higher predicted occurrences around the Tar Lakes 

and other surrounding water bodies near Hardwick village. The River Thames can also be traced 

with areas of high probability of occurrence as well, showing almost a linear feature. There is also a 

relatively high preference for middle and lower regions of Oxfordshire, as there are relatively fewer 
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water features towards the northwest in the Cotswolds and low woodland coverage in the Cherwell 

District. Riparian specialists showed the most restricted range of the three guilds – with high 

regions of potential occurrence focused on the Upper Thames Vale and Midvale Ridge character 

areas (OWLS, 2004).  

 In comparison to riparian species, woodland specialists found much higher preference for 

habitat in the Chilterns Area of Outstanding Natural Beauty (AONB), given its higher density of 

continuous woodlands. Wychwood Forest was also highlighted as an area with high probability of 

occurrence.  

 The generalist species results (Fig 4a) provide a perspective into the distributions of species 

with a widespread range. The city centres can be seen to be slightly more preferred in comparison to 

the two habitat specialist guilds, potentially due to the inclusion of serotine bat within this guild, 

which is known to be a synanthropic species (Ciechanowski, 2015). In particular, the generalist 

model can highlight some of the limitations of SDMs - the spatial autocorrelation of sampling 

efforts, which tend to be highest near population centres, are brought to the forefront, showing 

disproportionately high presence around major cities and towns in the county.  

 The minimum TSS score threshold for reliable models was determined to be 0.4 by Thuiller 

et al., 2019) and all models were above the threshold, but only models above 0.6 were selected 

(Table 2). Random forest algorithms consistently performed better than other algorithms, followed 

by the generalized boosted model, except for generalist species where the generalized linear model 

did better. RF and GBM are non-parametric models, which do not assume normal distribution of 

data unlike parametric classifiers (Gislason, Benediktsson & Sveinsson, 2006; Waske & Braun, 

2009). Given the skewed unimodal curves of the SDM values, non-parametric models will likely 

perform better (Franklin, 2010). The high TSS scores for the ensemble model were also expected as 

evidenced in Jinga et al. (2021), where a weighted means algorithm can dramatically improve 

model accuracy. However, generalist species show the greatest distribution of occurrence 

probability lower than 50% (Appendix 6), which is reasonable given the widespread distributions 

capturing an equally wide range of environmental covariates often resulting in lower predictive 

accuracy of SDMs (Evangelista et al., 2008; Goedecke et al., 2020). The weighted means TSS 

scores for generalists; however, are unexpectedly high for the species guild. Potential underlying 

reasons could be due to low-pass filtering, which is when the average function of ensemble models 

result in a "cleaning effect" - as where isolated predicted occurrences are removed (Marmion et al., 

2009; Grenouillet et al., 2011). This allows a more accurate fit and a reduction of overfitted models. 

The AUC scores are included as well as it provides an indicator for the sensitivity of the models, 
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but not the specificity or accuracy of its predictions (Lobo, Jiménez-Valverde & Real, 2008; Ruete 

& Leynaud, 2015).  

Table 2: TSS and AUC scores of individual and ensemble SDM models averaged between runs 

 Generalists Woodland specialists Riparian specialists 

TSS AUC TSS AUC TSS AUC 

Generalized additive 

model 

0.535 0.799 0.587 0.855 0.5613 0.838 

Generalized boosted 

model 

0.659 0.819 0.619 0.878 0.640 0.863 

Generalized linear 

model 

0.530 0.803 0.555 0.858 0.607 0.860 

Maximum entropy 0.375 0.700 0.595 0.877 0.627 0.858 

Random forest 0.642 0.770 0.793 0.903 0.709 0.841 

Weighted means 

ensemble 

0.938 0.996 0.938 0.969 0.721 0.933 

 

3.2 Connectivity models 

 Since the model outputs for the least-cost path analysis represent potential or structural 

connectivity, there is a high density of corridors across the Oxfordshire landscape as there is no 

representation of true barriers. Since there is no information on the locations of source and sink 

patches, omnidirectional least cost analyses are best able to represent corridors. The pathways are 

also relatively linear, which is expected of a least cost path model (Laliberté & St-Laurent, 2020). 

Gangadharan et al. (2017) found that least-cost paths (LCP) are preferred for finer scale analysis in 

comparison to other algorithms such as ones based on circuit theory, which allows LCPs to be 

better suited to the higher resolution analysis in this study. Similarly, to SDMs, the generalist 

species show the most diffuse pathways while specialists, especially riparian species, show the best 

delineated paths.  
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Figure 5a: Generalist species least cost corridors 

 

Figure 5b: Woodland specialist species least cost 

corridors 

 

Figure 5c: Riparian specialist species least cost corridors 

Figure 5: Linkage Mapper models for three bat species 

guilds in Oxfordshire 

Data: Species distribution model raster surface, core nature recovery areas 

(TVERC) 

CRS: OSGB36 British National Grid - EPSG:27700 
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 For riparian species, zones of low connectivity (high-cost areas) tend to overlap with large 

and continuous patches of arable land, indicating low preference of passage over likely uncovered 

fields, regardless of the hedgerows. On the other hand, woodland specialists have a much higher 

avoidance of larger open areas, seen by two notable regions of low connectivity in Chalgrove, a 

village with an airfield, and Weald, a hamlet in Bampton parish. While the airfield likely removed 

the connectivity corridors through Chalgrove, Weald and Bampton have normal to high habitat 

suitability. It is likely that due to the connectivity pathways being truncated to 5 km and as there are 

no existing protected areas within or near the two towns, connecting corridors would exceed the 

maximum dispersal distance. The black edges (indicating the highest costs) are likely an artefact of 

the county borders, as there are no protected areas outside of Oxfordshire that were in the input core 

areas shapefile. As such, because there were no linkages outbounds, the peripheries of the county 

are not well represented for connectivity, which is likely not realistic.  

 The metrics calculated to evaluate the quality of links were CWD:Euc and CWD:LCP (Fig. 

6), and for quality of cores, a centrality metric was calculated. High quality links means low cost of 

travel along the least cost path, meaning a lower ratio, indicating lower resistance along the path of 

movement (Feng et al., 2021). The high-quality linkages do not have a strong spatial pattern for 

generalists, as expected from their wide-ranging tolerance to environmental conditions. Similarly, 

woodland specialists also do not show a strong spatial preference, but there is a slight lean of strong 

linkages towards South Oxfordshire, where there are prevalent forest patches in the Chiltern 

AONB. For riparian specialists, the best linkages can also see in the Chiltern AONB and city centre.  

 The Centrality Mapper was another metric calculated, which evaluates the importance of the 

nodes in the graph. Centrality values can also indicate which smaller patches have a high 

connectivity value that might have been overlooked due to their size. These smaller patches are thus 

important for building stepping stone corridors between larger patches (Mallory & Boyce, 2019; 

Greenspan et al., 2021). As expected, the best cores are larger in size and closer to the centre of the 

county, but smaller cores in notably in Wheatfield, Little Wittenham, Cholsey, Little Milton, and 

Thame (all guilds) has centrality values rivalling cores eight times its size.  
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Figure 6a: Generalist species node centrality and link 

metrics 

 

Figure 6b: Woodland specialists node centrality and 

link metrics 

 

Figure 6c: Riparian specialists node centrality and link 

metrics 

 

 

 

 

Figure 6: Current flow centrality metrics and cost-

weighted distance to least-cost path ratio for three bat 

species guilds in Oxfordshire 

Data: Least-cost path from Linkage Mapper, core nature recovery areas 

(TVERC) 

CRS: OSGB36 British National Grid - EPSG:27700 
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3.3 Spatial conservation prioritization 

 The selected zones for recovery that maximizes connectivity are the pinch points, or 

bottlenecks, on the landscape for conservation. Other tools such as Pinchpoint Mapper, part of the 

Linkage Mapper toolset, was not used for this selection as it did not allow conservation targets to be 

set as a target feature for how much area to select. Within the SCP model outputs, the linear 

connectivity corridors from the Linkage Mapper model are clearly reflected (Fig 7), highlighting the 

best zones for establishing new conservation core areas. Most of the zones with high importance 

(Fig. 7b) are in the Upper Thames Vale and Midvale Ridge character zones, and a large part also 

overlaps with the Chilterns AONB. Feedback for TVERC’s draft NRN also identified the need to 

increase connectivity between patches within the Cotswolds AONB.  

 While the selected corridors have a large degree of similarity between the three species 

guilds, there are significant differences between the area of corridors present, where the woodland 

specialist species have much stronger preference for certain pathways as seen by clearly delineated 

and wider but fewer corridors, while riparian species have many narrower, more disconnected 

corridors. The areas of high importance for both present and future conservation action is calculated 

by the Ferrier’s score (Figs. 7b, 7d); however, are largely the same across the guilds. It is notable 

that the areas of high importance, or irreplaceability, largely overlap water features, including the 

Otmoor lake reserve, the private lakes around Hardwick, the Farmoor reservoir, the three adjoining 

Cresswell, Peninsula, and Oxey Mead Lakes, the lakes by Dorchester, the River Glyme dammed by 

Blenheim, and the Caversham Lakes bordering Reading. The preference for water features across 

all species is appropriate as UK bat ecologists identified that standing water (seen the lake 

preference from the Ferrier scores) results in high invertebrate populations, and the complex habitat 

assemblages of wetlands and riparian woodlands provide ample foraging and roosting grounds 

(Dietz & Kiefer, 2016).  

 While freshwater features are ecologically important and prioritized for connectivity, the 

representation of waterbodies in existing protected areas are already high, where ~50% of water 

features were already covered by core areas (Appendix 7).  Woodland features were much more 

poorly represented, where only 22.7% were represented for generalist species (Appendix 7). This 

can indicate to the importance of focusing on protecting more areas of woodlands, while enhancing 

the habitat quality of existing protected water features.  

 Compared with the previous nature recovery networks conducted for Oxfordshire by both 

Smith et al. (2021) and TVERC, there are many overlapping areas of similarity (TVERC, 2020; 

Smith et al., 2021). Most importantly, all three analyses proposed recovery zones concentrated in 

the south-eastern Chilterns AONB, the horizontal stretch of the Midvale Ridge and the Upper 
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Thames character area, as well as patches in the Cotswolds AONB, above the Upper Thames strip. 

These are zones that already have a high number of protected reserves, which indicates the accuracy 

of the models that identified high ecological priority zones but also highlight that these areas will 

particularly benefit from corridors to connect the individual core patches. 
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Figure 7a: Proposed nature recovery network for 

generalist bat guild in Oxfordshire with a 50% 

conservation target 

 

Figure 7b: Importance of selected nature recovery 

network for generalist bat guild in Oxfordshire with a 

50% conservation target 

 

Figure 7c: Proposed nature recovery network for 

generalist bat guild in Oxfordshire with a 30% 

conservation target 

 

Figure 7d: Importance of selected nature recovery 

network for generalist bat guild in Oxfordshire with a 

30% conservation target 

See Appendix 5 for SCP maps for woodland and riparian specialists 
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Figure 8a: TVERC draft NRN map (TVERC, 2020) 

 

 

Figure 8b: Reformatted Smith et al. (2021) map (Smith 

et al., 2021) 
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4. DISCUSSION  

4.1 Key findings 

 Counties across the UK are devising methods to design local nature recovery strategies for 

implementation to meet the scheduled 2023 LNRS completion date. While past UK environmental 

initiatives have taken into consideration connectivity, they were still heavily reliant on expert 

opinion and simplistic buffer and overlay analyses (Cunningham et al., 2021; Smith et al., 2021). 

Smith et al. (2021) emphasized the need for a transparent and precise methodology to identify and 

map NRN priority areas through tools such as systematic conservation planning, made increasingly 

accessible with new modelling software and data availability. This analysis aimed to respond to 

Smith et al. (2021)’s call for using SCP as the main instrument for the designation of the NRN; 

however, this analysis centres species connectivity, and pilots a novel modelling framework where 

ecological corridors are selected using a high-performance SCP solver. The findings reinforce the 

need for but also underscore the caveats of a connectivity-integrated SCP approach for designing an 

NRN.  

 The integrated framework allows a look into separate components within landscape 

connectivity, and it found that for bats, habitat suitability largely favours not only preferential 

habitat but also highly localized structures of existing connectivity, such as hedgerows and rivers. 

The least cost path model accentuated larger landscape-scale corridors of potential and structural 

connectivity based on graph theory, which took into account the resistance to travel given by the 

SDM surface. These routes were then prioritized using an SCP algorithm to identify the best areas 

for bat conservation that simultaneously meets two conservation targets – 30% and 50%. The 

performance of this modelling framework is best demonstrated by the triangulation of the final SCP 

maps with previous work by TVERC and Smith et al. (2021), which saw high degree of agreement 

and overlap over the selected areas. All three studies identify the main priority zones for nature 

recovery as being improvements of the links across the Upper Thames Vale character zone 

following the Thames from Kelmscott to Oxford city, and then out to Bicester along the Ray, and 

reduction of habitat fragmentation in the Chilterns AONBs. Other key zones also identified by 

either Smith et al. (2021) or TVERC include the connectivity corridor between Oxford City district 

and South Oxfordshire, and the larger patch of important zones in Cornbury and Wychwood. There 

are several additional sites identified in this analysis not seen in the other two maps, such as 

linkages identified in Linkage Mapper through Wheatley and Albury, and more connectivity around 

and towards Banbury from the city centre. These are areas for potential future research as they have 

been identified as important sites for connectivity in this analysis. This model formulation not only 

corroborated previous SCP-centred and expert-created maps, but it was able to do so with 
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accessible and simple data inputs, which is an important implication for reproducibility in regions 

even with low data.  

 Furthermore, the high level of overlap with previous literature also provides evidence for the 

importance of bat species as bioindicators. The study results bring new focus and insight for the 

restoration and creation of woodlands and riparian zones, but future research would be needed to 

expand the functional niches represented by focal species. Thus, returning to the first initial research 

question of where priority zones for bat connectivity are located to support nature recovery and 

landscape connectivity, this analysis was able to map and identify the best corridors to achieve both 

goals.  

 In addition to being a modelling methodology, this stepwise framework is a way to structure 

the way conservation organizations bring together data and participants for the creation of a 

transparent and community-based nature recovery strategy. It highlights the importance of a 

species-targeted approach in identifying landscape corridors through the SDM and connectivity 

analyses, and how organizations and representatives can come together with the focus of defining 

and reconciling conservation objectives and targets for the SCP prioritization analysis. This is 

particularly relevant for the LNRS, which has a mandatory reporting period every five years. This 

allows the LNRS to remain dynamic and adaptable policies that can learn from previous years and 

change with the environment. The iterative nature of SCP therefore allows for these processes to 

remain streamlined. As such, this study strongly advocates for the use of SCP with connectivity 

integrated for the formulation of future LNRS and the scaling up to join local strategies to create the 

nationwide strategic NRN.  
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4.2 Recommendations for Oxfordshire’s NRN 

 The decision-support maps produced through 

this analysis was created with the purpose of 

recommending new or reinforcing evidence for 

existing areas of restoration. It is done by 

systematically selecting habitat patches to reduce 

fragmentation and increase connectivity, aiming to 

achieve the landscape and linear corridors 

recommended by the Lawton Review (Fig. 9). These 

recommendations address the second research question 

on the practical ability of this modelling methodology 

to inform a NRN for Oxfordshire.  

The Ferrier’s score highlighted the importance of 

water features not just for riparian specialist bats but 

for species across guilds. Existing work by the Freshwater Habitats Trust (FHT) has brought 

together conservation and community stakeholders to work to build and restore fens, meadows, and 

other small-scale waterbodies, identifying Important Freshwater Areas (IFAs) for ecological 

benefits. TVERC’s Draft NRN used a modified IFA as a part of the proposed recovery zone, but the 

terrestrial habitats of the IFA were excluded to reduce overlap with a separate terrestrial analysis 

TVERC had conducted. This meant the upper river catchments and riparian woodlands identified in 

the IFA may not be well represented in the draft NRN. Potential next steps can focus on reinforcing 

these river and lakeside zones in future NRNs, as the habitat assemblages next to water features, in 

particular lakes, have been identified as highly important through the Ferrier’s metric. 

 While freshwater habitat was identified as irreplaceable in the final prioritization solution, the 

representation statistics also revealed that most water features are fairly well protected under 

existing core patches, but only a low percentage of woodlands are represented, even for core areas 

selected for the woodland specialists (Appendix 7). As such, the network identified in this analysis 

will provide broad insight into where to target tree planting for habitat connectivity, and a 

recommendation for the NRN would be to use SCP with more detailed woodland environmental 

information to select optimal areas for treescapes. Similar to the FHT, the Oxfordshire Treescapes 

Project has been leading initiatives in this field and have produced an opportunity map for 

establishing treescapes in the county. They have also identified that 36% of Oxfordshire is not 

suitable for woodlands (Oxfordshire Treescape Project, 2021). Next steps can be to establish an 

SCP methodology with Treescapes to identify these opportunity areas with more conservation 

features (such as connectivity) and constraints (such as land ownership).  

Figure 9: Components from ecological networks, 
from (Lawton, 2010) 
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 The importance of core area placement was also found to be critical, as demonstrated by the 

small core (eg. in Wheatfield) with similar centrality values to significantly larger core areas, 

indicating that while bigger cores with more complex edges are likely to be the most important for 

connectivity, cores that are smaller but well placed to act as stepping stones can be equally as 

important. While this deviates from ETIB’s thesis of the species-area relationship where larger 

areas equate to more species diversity and abundance, it reinforces landscape connectivity theories 

around minimizing cost distances. This is an important finding as it indicates stepping stone 

corridors can be highly efficient while also being easier to implement as they can have lower levels 

of protection, increasing their widespread adoption and applicability even for private land (Lynch, 

2019; Riggio & Caro, 2017). However, it should be considered that while stepping stones are easier 

to establish given their smaller size, corridors are often considered more ecologically important, 

because the surrounding landscape matrix around stepping stones needs to be favourable for the 

species in order for dispersal to happen (Baum et al., 2004; Lynch, 2019). Stepping stones often 

preferentially benefit highly mobile species as well (Pedley & Dolman, 2020; Mony et al., 2022). It 

is important to note that cores below 10ha were removed in the methodology due to high 

computational runtime and the focus on assessing “bigger” reserves (BBMJ), but these findings 

shows that an area of improvement would be to also assess these smaller patches. The focus of 

future NRNs would be an interspersed landscape of stepping stone corridors, potentially with ponds 

or urban forests, and small-scale linear features such as hedgerows as evidenced by the SDMs, and 

larger contiguous tracts of nature recovery to act as corridors. The FHT has also previously 

facilitated pondscape conservation initiatives, emphasizing the significance of creating small-scale 

riparian habitats that act as stepping stone patches for landscape connectivity (Freshwater Habitats 

Trust, 2012; Ponderful, 2020). For smaller linear habitats, existing work by the Countryside Charity 

(CPRE) aims to increase hedgerows by 40% by 2050, a target also echoed by Wild Oxfordshire 

(Wild Oxfordshire, 2020; The Countryside Charity, 2022). Hedgerows are also under council 

protection as it is considered an offense to remove hedgerows more than 20 meters long unless for a 

housing or infrastructure development, though unfortunately this only applies to farmers and certain 

landowners (Oxford City Council, 2015). 

 Regardless of quantitative metrics, how well this modelling framework performs will 

ultimately depend on its operationalization for conservationists and landowners. To gain a better 

understanding of usability of this analysis, several informal discussions on the applicability of the 

results of this modelling analysis were conducted with directors and researchers from Wild 

Oxfordshire, BBOWT, TVERC, and the Wild Oxfordshire, and the Durrell Institute of 

Conservation and Ecology. Key takeaways from these discussions highlighted the benefit of this 

framework to provide a statistically robust methodology to verify existing work and create decision-
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support maps that target reducing habitat fragmentation. They also touched on unreported 

weaknesses in previous Oxfordshire datasets, in particular the Conservation Target Areas that 

informed the TVERC draft NRN, which were outdated and did not sufficiently consider the wider 

catchment of freshwater habitats or connectivity. Lastly but most importantly, all discussions 

touched on the importance of stakeholder and local engagement, the lack of which was a key caveat 

of this modelling process. It was noted that while strategic level maps are important to direct focus 

on priority zones, they neglect the land tenure challenges and fragmentation of the Oxfordshire 

landscape. For NRNs to achieve rapid and significant results of nature recovery, private landowners 

must be involved in its implementation. Half of Oxfordshire is owned by 172 landowners, with 26 

owning around a quarter of the county. This disproportionate land ownership results in highly 

influential voices governing large tracts of land (HERO, 2022). This is particularly important for 

potentially creating more small-scale stepping stone green and blue infrastructure such as 

hedgerows and ponds as identified in this analysis, as they can be more easily implemented on 

private estates. While more ambitious, restoration for wetlands, meadows, and woodlands identified 

in the Ferrier’s irreplaceability score and representation statistics are also critical. Engagement with 

landowners for nature recovery is underway with the Oxfordshire Treescapes Project, which has 

mapped several estates. Many of the priority regions identified not only in this paper but also in the 

draft NRNs by TVERC and Smith et al. (2021) overlap with these estates, and while there are 

environmental payment schemes for incentivizing nature recovery action and funding, a more 

sustainable solution is needed to bring key landowners on board.  

4.3 Areas for improvement and future research 

 As this study piloted a new modelling framework, there are several areas of improvement for 

improving the nuance of the models. These recommendations aim to answer the last research 

question, and sets guidelines for how future research can be directed.  

4.3.1 Modelling framework 

 Primarily, it is important to reiterate that this analysis proposes a species-focused decision-

support methodology for selecting high priority connectivity corridors. As such, the study 

framework is deliberately focused on ecological data and theory, as such a socioeconomic 

dimension was out of the scope of this project, with recognition for its importance in terms of the 

praxis of the nature recovery network. It would not be appropriate to apply the proposed framework 

to draft a full NRN, as it is meant to inform the selection of key conservation features such as 

connectivity. However, in order to move forward to drafting a holistic NRN, future work should 

focus on gaining insight from expert and local collaborators especially for the resistance raster 

inputted into the connectivity model, which does not have to just be specific species movement 
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resistance but can also incorporate socioeconomic values (Whitehead et al., 2014). The cost surface, 

which was a connectivity raster for this analysis, should also be consulted to incorporate other 

values such as the opportunity cost for nature recovery. A future analysis can potentially examine 

opportunity cost through quantifying ecosystem services and natural capital assets (Lin et al., 2017). 

This would align with the natural capital approach of the 25YEP and help indicate that landowners 

can see the ecological value of their land for the network through the economic terms they are 

familiar with (Lü et al., 2017; Dempsey, 2021). 

 While socioeconomic and human dimensions of nature recovery are additional components to 

be incorporated into the framework, there are several areas where the modelling methodology can 

be enhanced to optimize its accuracy. In particular, it is important to note the hierarchical nature of 

the modelling process can result in a common modelling problem of “garbage-in-garbage-out” 

(GIGO), where the input data and modelling limitations are carried through to the next model. 

These areas for improvement are best discussed by addressing the individual steps of the 

framework.  

4.3.2 Models  

 As the modelling framework proposes the steps to be taken, the models themselves can be 

purposefully chosen to suit the needs of the county. To inform future selection of models, there are 

several notable lessons learnt from the specific algorithms used in this analysis.  

4.3.2.1 Species distribution models 

 SDMs are a good example of the GIGO concept, because while the widely accessible 

presence-only species records were intentionally selected for this study for their tractability, they 

are also known for their coarse and potential unreliability when inferring species occurrences 

(Peterson & Soberón, 2012; Franklin, 2010). This can be further exacerbated by the inherent 

limitations of models themselves. The models for this analysis are based on landscape ecology 

theory and graph theory using habitat variables to simplify the landscape to estimate species 

presence and movement. While efforts to enhance modelling accuracy were taken for each step of 

the framework, such as deliberately using ensemble models and careful consideration of model 

parameters, the models are ultimately still correlative. Future analyses would benefit from a better 

understanding of the biological processes contributing to dispersal beyond least-cost paths and 

taking into consideration the theoretical underpinnings of ecological connectivity at the individual 

species scale, which postulates behavioural and foraging ecology as its main concepts (Fletcher et 

al., 2016). As such, these hybrid-oriented models would need more detailed and mechanistic species 

records to be included, and the existing protected area dataset should be updated to include source 

and sink species population dynamics. Fortunately, there are existing tools such as spatially explicit 
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population models (Paquet et al., 2020), species abundance distributions (Baldridge et al., 2016), 

joint species distribution modelling (Wilkinson et al., 2021; Escamilla Molgora et al., 2022), or 

metapopulation models (Donaldson et al., 2021).  

4.3.2.2 Connectivity model  

 The intention of LNRS is to produce a county, local-scale analysis; but evidently, ecology is 

not limited by county borders. As seen in the connectivity models (Fig. 5), the artefacts of 

Oxfordshire’s borders result in unrepresentative resistance values around the county edges. While 

the national NRN is meant to coalesce local scale LNRSs, they should still be designed with the 

wider landscape in mind, such as a buffer around the county to avoid any potential edge effects.  

 Additionally, Linkage Mapper is a cost-weighted distance analysis, which implicitly indicates 

that species have an understanding of the entire landscape and therefore are able to identify the least 

cost paths (McClure, Hansen & Inman, 2016; Palmer, Coulon & Travis, 2011). It has often been 

critiqued to be sensitive to over-generalization and overfitting due to low resistance between 

patches, resulting in straight line corridors (Rayfield, Fortin & Fall, 2011; Koenig & Bender, 2018; 

Laliberté & St-Laurent, 2020). Additionally, future analyses would benefit from additional 

manipulation of the SDM surface before using it as a resistance raster, as species are still able to 

traverse sub-optimal (low probability of occurrence) habitats (Elliot et al., 2014). A solution would 

be to use a non-linear transformation to account for species responses to resistance values (Jennings 

et al., 2020). 

 While least-cost path is considered a fairly early and rudimentary version of connectivity 

modelling, its applicability is dependent on the species, as McClure et al. (2016) found that it 

outperformed the more popular circuit theory models for elk, due to the generational transfer of 

migratory routes. As such, the most important step to ensure connectivity analyses in future 

research is optimized is the selection of the appropriate model, and with the rapid development of 

new tools, there is a much more diversified selection to choose from (Dutta et al., 2022).  

4.3.2.3 Spatial conservation prioritization  

 Through informal discussions with Oxfordshire conservationists working with the city 

council to formulate a county LNRS, the SCP process advocated by this study and Smith et al. 

(2021) was noted to be considered computationally difficult to understand and politically 

contentious, which may undermine the transparent process that SCP champions (Margules & 

Sarkar, 2007:p.9). Unlike the consultation often conducted for LNRS that tend to focus on 

conservationists and experts, the SCP process involves bringing together stakeholders with a variety 

of conflicting interests (TVERC, 2020; Wildlife and Countryside Link, 2021). As a result, the 
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selection of targets for SCP can be highly debated. This is a prime instance where there needs to be 

a bridge between science and policy through a co-designed, co-productive process to allow for 

effective decision-making to fill a “usability gap” between strategic maps and users on the ground. 

However, this may require a shift in the way conservation planning is conceptualized in the country. 

Previously, protected areas in England were designated through expert opinion (Janssen & 

Knippenberg, 2012:p.241). In recent years, a study by Dempsey (2021) reviewed conflicting 

perspectives of conservationists in the UK, which noted that while there is a shift towards having 

more human-integrated conservation areas. However, it also found that “wild nature” untouched by 

conservationists is considered the best management choice. The implications of these perspectives 

mean that the voices of farmers and local parishes can be potentially undervalued in LNRS 

consultation. Furthermore, a recent environmental policy development in England is the new focus 

on natural assets and capital through the 25YEP - the financial quantification of ecosystem services. 

A natural capital perspective that holistically integrates a diversity of values can inform the 

selection of targets for prioritization, but in the same paper by Dempsey (2021), it was shown that 

most conservationists are opposed to this economic-centric policy perspective.  

4.3.3 Scalability 

 In terms of scalability of this project, two important considerations should be addressed for 

future studies. The first consideration is how the high computational intensity can limit how 

modifiable the modelling framework is for different counties. Due to the resolution of the dataset 

and the modelling algorithms, runtimes for each SDM exceeded 5 hours and for each connectivity 

model, each runtime exceeded 7 hours. While the Gurobi software for SCP is the fastest optimizer 

in the world, free licenses are only available for academic purposes. Fortunately, there are multiple 

ways that this can be streamlined and made open source for counties to benefit from this approach. 

To reduce computation time, the 30-meter input raster data (habitat layer, NDVI) can be resampled, 

but to change the 200m planning unit size, there needs to be consultation on what is the area of land 

that should be used to target action. There are also new SCP models that can streamline the 

connectivity analysis into the prioritization problem - the new Marxan Connect model (still under 

development) is one of the first SCP algorithms to foreground connectivity into the selection of new 

sites (Daigle et al., 2020). 

 The second consideration is the choice of focal species. Using focal species can be limited 

depending on how representative they are for other species habitats. While bats are found 

throughout the Oxfordshire landscape and share a high degree of functional niches with many other 

common woodland species, there are still several unique characteristics that limit their 

generalizability, such as the nocturnalism and their dwelling preferences in abandoned 

infrastructure and caves. Furthermore, using generalist bioindicator species for SDMs can 
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potentially reduce accuracy. Generalists are noted to be challenging to model given their wide-

ranging habitat preferences, which can result in model overfitting and creating a non-discriminate 

surface for all high probability of all low probability (Goedecke et al., 2020; Evangelista et al., 

2008; Grenouillet et al., 2011). Future work can incorporate a multiple focal species approach 

instead with joint species distribution modelling to encapsulate more ecological processes more 

accurately (Wilkinson et al., 2021; Escamilla Molgora et al., 2022).  

Summary of key takeaways and next steps for designing NRNs in Oxfordshire: 

● While Smith et al. (2021) did not include species distribution models in their analysis as it 

was considered to not be representative of habitat quality, this study has found that they are 

still valuable, especially for connectivity modelling. However, more robust data such as 

abundances, spatiotemporal information to inform movement ecology, and the selection of 

other species representing other habitat niches would increase the ecological accuracy to 

future analysis.  

● Connectivity modelling is an ever-changing field, and future research can work to compare 

different modelling methodologies or attribute nodes with information based on whether 

they are “sources” or “sinks” of genes and populations, taking more of a metapopulation 

theory approach.  

● To encapsulate the full socioecological underpinnings of conservation planning, SCPs need 

to integrate human dimensions, either by including natural capital information, or through 

the careful selection of targets and land use cost - which is not limited to monetary units but 

could be values representing the likelihood of bringing onboard private landowners.  

● The creation of the network should focus on a well-balanced mix of longer, contiguous 

corridors between large but far patches, but a series of interspersed small stepping stone 

refuges that can be less maintenance and with lower protection to incentivize and streamline 

implementation. 
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5. CONCLUSION 

 The nature recovery networks for the county LNRS have the potential to be a powerful policy 

tool to drive data-driven and integrative landscape-scale conservation in the UK in the upcoming 

years. The selection of these networks will be the priority of many decision-makers and 

conservationists as the first LNRS for each county is scheduled to be rolled out in 2023, but every 

five years thereafter. Connectivity modelling and spatial prioritization will be key in the creation of 

decision support outputs, but as this study has found, there needs to be a careful and purposeful 

selection and operationalization of the models and input data. The future also holds opportunities to 

scale up this methodology in multiple ways - expanding the network beyond county boundaries, 

enhancing the robustness of model predictions, and the inclusion of more open-source data as they 

are being published.  

 This novel modelling framework untethers the potential to leverage the rich local ecological 

data into delineating emergent corridors and new habitat patches - the pillars of a resilient nature 

recovery network. With future work to embed this framework in meaningful and inclusive 

stakeholder engagement, it can begin to disassemble the siloes of science and community, moving 

away from expert-driven conservation to identifying bottom-up and socio-ecological connections.  
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APPENDICES 
Appendix 1:  

 

 

 

Appendix 2 – 4: Github R code repository (anonymized): 
https://github.com/dissertationrepository/BCMdissertation  
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• Appendix 2: Biomod code 
https://github.com/dissertationrepository/BCMdissertation/blob/main/appdx2-biomod2.R  

• Appendix 3: ENMeval code 
https://github.com/dissertationrepository/BCMdissertation/blob/main/appdx3-
enmevaluate.R  

• Appendix 4: prioritizr code 
https://github.com/dissertationrepository/BCMdissertation/blob/main/appdx4-prioritizr.R  

Appendix 5: ENMeval results, parsed to selected parameters 

  Feature type Regularization multiplier AICc delta.AICc 

G
en

er
al

is
t 

L 2 1578.361 13.81656876 
LQ 2 1861.673 297.1288549 
H 2 1641.116 76.57200414 
L 3 1564.544 0 

LQ 3 1812.99 248.4461614 
H 3 1573.125 8.580689281 

W
oo

dl
an

d 

L 1 7642.757 292.2310258 
LQ 1 7469.21 118.6844383 
H 1 7417.677 67.1510036 

LQH 1 7417.718 67.1924739 
LQHP 1 7406.844 56.31864685 

LQHPT 1 7350.526 0 

R
ip

ar
ia

n 

L 3 5665.652 187.5903135 
LQ 3 5517.721 39.65960896 
H 3 5478.061 0 

LQH 3 5484.221 6.159709545 
LQHP 3 5491.705 13.64344477 

LQHPT 3 5495.773 17.71124162 
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Appendix 5: Spatial conservation prioritization maps 

 

5A: SCP map for riparian specialists for a 30% target 

 

5B: Site irreplaceability map for riparian specialists for 
a 30% target 

 

5C: SCP map for riparian specialists for a 50% target 

 

5D: Site irreplaceability map for riparian specialists for 
a 50% target 
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5E: SCP map for woodland specialists for a 30% target 

 

5F: Site irreplaceability map for woodland specialists 
for a 30% target 

 

5G: SCP map for woodland specialists for a 50% target 

 

5H: Site irreplaceability map for woodland specialists 
for a 50% target 
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Appendix 6: Histograms of species distribution model probabilities 

 

6A: Generalist species distribution model probability distribution 

 

6B: Riparian specialist species distribution model probability distribution 

 

6C: Woodland specialist species distribution model probability distribution 
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Appendix 7: Representation statistics from SCP model 

 Generalist 

Already protected 
Proposed NRN 

30% 50% 

Woodlands 15.3% 30% 50% 

Riparian zones 39.3% 49.7% 62.9% 

 Woodland specialist 

Already protected 
Proposed NRN 

30% 50% 

Woodlands 13.6% 30% 50% 

Riparian zones 39.8% 51.8% 64% 

 Riparian specialist 

Already protected 
Proposed NRN 

30% 50% 

Woodlands 22.7% 30% 50% 

Riparian zones 50.7% 54.8% 67.5% 

 

 


